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J. Phys. A: Math. Gen. 20 (1987) 239-244. Printed in the U K  

Free energy amplitude in finite-size scaling: the Baxter model 

Lo'ic Turban and Jean-Marc Debierre 
Laboratoire de Physique du Solidet, Ecole des Mines, Parc de Saurupt, F54042 Nancy 
cedex, France and Universitt de  Nancy I ,  BP 239, F54506 Vandoeuvre les Nancy, France 

Received 18 February 1986 

Abstract. The critical amplitude A,, of the free energy density of the Baxter model is studied 
numerically on strips with widths L = 2-12 as a function of the four-spin interaction K , .  
It remains almost constant, near to double the exactly known Ising result (A,  = 2A2jng = 
7 / 6 )  in the range of K ,  values for which an extrapolation to infinite width is possible. 
possible. 

1. Introduction 

According to finite-size scaling theory (Fisher 1971, Barber 1983), the critical value of 
the free energy density on a strip with width L and periodic boundary conditions 
varies with L in two dimensions like 

f , ( ~ )  = ~ O + A ' L - ~  L+CC (1.1) 

wheref' is the bulk free energy density and A .  is a critical amplitude which is expected 
to be universal (Privman and Fisher 1984). 

Non-universal behaviour is known to occur when a marginal scaling field is present 
(Kadanoff and Wegner 1971). This is observed in the exactly solved symmetric 
eight-vertex model (Baxter 1972) where the temperature exponent 

y ,  = 2 - (2/ n) cos-' tanh( 2 K4) (1.2) 

varies continuously with the four-spin interaction K4 which enters the Ising formulation 
of this model whereas the magnetic exponent keeps its king value y ,  = (Barber and 
Baxter 1973). In the Ising formulation, the Hamiltonian is 

where the first sum is over next-nearest-neighbour bonds and the second over elementary 
plaquettes on a square lattice (figure 1). The critical line is given by 

sinh(2K2) = exp(-2K4). ( 1.4) 
Recently (Nightingale and Blote 1983), the inverse correlation length amplitudes 

a, ,  a,,,, a,, for the energy, magnetisation and polarisation correlations have been studied. 
The numerical results support a well known relation with the anomalous dimensions 
of the corresponding operators (Pichard and Sarma 1981, Luck 1982, Cardy 1984) 

a, = 2 TX, ( j  = t, m, PI. (1.5) 
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Figure 1. Transfer matrix used for the calculation of the free energy densityf,( L ) .  Periodic 
boundary conditions are  used. K z  is the second-neighbour interaction (bold lines) and  K ,  
the four-spin interaction (broken l ines).  When K ,  vanishes, the Baxter lattice is decoupled 
into two independent lsing sublattices. 

The a, are related to the appropriate free energy level amplitudes A, (Privman and  
Fisher 1984, Turban and Debierre 1986) through 

(1.6) 

The A, may be deduced from the successive eigenvalues A, of the transfer matrix at 
the critical point on an  L x ~  cylinder built up of L X  1 slices 

f a ( L ) = ( l / l L ) l n j l ,  =fn+A,L-’ (1.7) 

In the present work, we study numerically the free energy amplitude An of the 
Baxter model. Our purpose was to see whether An remains universal in the presence 
of a marginal operator and  if not, to find out an  analytic expression for the K ,  
dependence. Our numerical results are presented in § 2 and discussed in D 3. 

a, = A,, - A,. 

with ’10 > 122 a. . . . 

2. Numerical results 

The free energy density is obtained using the transfer matrix of figure 1 for N = 2-12. 
choosing 1 as unit length, L is equal to N, the number of spins in a column. The free 
energy density is also the free energy per site (figures 2 and 3) given by 

f n ( N )  = I n  . 2 o / N = f n + A o ( N ) N - ’  (2.1) 
A,( N )  = A,( 1 + b N - ’ ) .  (2.2) 

A power law correction to scaling has been included in A , ( N ) .  Even values of the 
width are taken in order to get two decoupled k ing  sublattices when K ,  vanishes. 
A,( N )  and f”( N )  are estimated for odd N values using results for N - 1 and N + 1 : 
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Figure 2. Free energy density of the Baxter model as a function of 1/ N' where N is the 
number of spins in a column, for negative values of the four-spin interaction K ,  (e, -1.0; ., -0.8; A, -0.6; X ,  -0.4; + ,  -0.2; Y, 0 )  
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Figure 3. As in figure 2 for positive values of K ,  (e, 1; W, 0.8; A, 0.6; Y ,  0 ;  X ,  0.4; +, 0.2). 

Extrapolated values A. and f o  may then be obtained through a three-point fit (figure 
4, tables 1 and 2 ) .  A. remains almost constant in the range -1  S K 4 S  0.2. The correction 
to scaling exponent y is then near to 2 and correctly related to the exponent for f o ,  
y + 2. For larger K, values, either an anomalously large correction to scaling exponent 
is obtained, or the three-point fit is impossible. The strip widths are probably too small 
to observe the asymptotic regime. The poor convergence in this domain has already 
been observed for the exponent y, in a phenomenological renormalisation group study 
(Nightingale 1977). 

The value of A. obtained in the region K 4 S 0 . 2  where the extrapolation may be 
trusted is twice as large as the exactly known Ising result (Ferdinand and Fisher 1969) 

(2 .5 )  A:'"'= n-/ 12 = 0.261 799 388. 
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Figure4. Extrapolated values of the free energy amplitude of the Baxter model as a function 
of the four-spin interaction K , .  

Table 1 .  Amplitude of the free energy density A,( N )  on the largest strips as given by 
equations (2.3) in the text as a function of the four-spin interaction K , .  When possible 
extrapolated values A, are given. y is the correction to scaling exponent. 

K4 Ao(7) Ao(9) Ao(11) A, V 

-1.0 
-0.8 
-0.6 
-0.4 
-0.2 

0 
0.2 
0.4 
0.6 
0.8 
1 .o 

0.508 155 784 
0.508 011 097 
0.507 436 994 
0.505 687 834 
0.502 605 82 1 
0.500 881 372 
0.503 588 520 
0.523 721 172 
0.636 540 470 
0.957 443 966 
1.423 036 464 

0.515 448 757 
0.515 295 850 
0.514 714 037 
0.513 087 049 
0.510 622 085 
0.509 463 824 
0.51 1 053 534 
0.521 064 172 
0.583 690 175 
0.850 464 061 
1.404 280 123 

0.519081 640 
0.5 18 923 873 
0.518 344 779 
0.516 837 968 
0.514817 181 
0.513 986 590 
0.515 036638 
0.521 002 422 
0.554 898 944 
0.745 170 525 
1.29 1 074 492 

0.5261 
0.5260 
0.5254 
0.5245 
0.5241 
0.5242 
0.5244 
0.5203 
0.4831 
- 
- 

2.1 
2.1 
2.1 
2.0 
1.9 
1.8 
1.8 
4.2 
1.7 
- 
- 

Table 2. As in table 1 for the bulk free energy density Jo( N )  given by equation (2.4) in 
the text. Jo is the extrapolated value and the correction to scaling exponent is y+2.  

-1.0 1.786416271 
-0.8 1.590 146690 
-0.6 1.398 405 703 
-0.4 1.216 485 497 
-0.2 1.054771 892 

0 0.929 913 375 
0.2 0.859 963 502 
0.4 0.853 610 176 
0.6 0.905 104 497 
0.8 1.001 487 105 
1.0 1.132 802 476 

~ ~ ~~ 

1.786302 318 1.786265 990 
1.590 032 866 1.589 996 586 
1.398 291 999 1.398 255 692 
1.216 369 885 1.216 332 376 
1.054 646 638 1.054 604 687 
0.929 779 214 0.929 134 047 
0.859 846 861 0.859 807 031 
0.853 651 692 0.853 652 309 
0.905 930 283 0.906 218 196 
1.003 158666 1.004211 601 
1.133 095 543 1.134227 600 

~ ~ ~~~ ~ ~ 

1.786236 4.0 
1.589967 4.0 
1.398 226 4.0 
1.216301 3.9 
1.054 568 3.8 
0.929 694 3.8 
0.859771 3.7 
0.853 660 5.7 
0.906489 3.6 
1.008 752 1.0 
- - 
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This discrepancy simply comes from a geometrical factor. When K4 vanishes one gets 
two decoupled lsing sublattices. In order to get the free energy density on one of 
these, the Baxter free energy density must be halved. 

3. Discussion 

Our numerical results suggest that the free energy amplitude of the Baxter model is 
equal to 2AFing, independent of K , .  We now show that this is true at least in the first 
order in K , .  

Consider the Baxter model on an L x CO strip with periodic boundary conditions 
near to its decoupling point K ,  = 0. Using 1 as unit length, the free energy density is 
given by 

f , (L )  = lim - exp(-PH,) n exp K4s,s,sks, 
M-W N M  ( v k l )  

where Ho corresponds to the two decoupled Ising sublattices. A perturbation expansion 
gives 

(3.2) 

where & I s i n g (  K , )  = ( s i sk) ,  is a first-neighbour Ising correlation function. One may notice 
that fbsing is the king free energy density with 1 taken as unit length; since the unit 
surface is the half of the surface per spin, the Ising free energy per spin is twice 
this value. This is the reason why f "  in table 1 converges towards the known Ising 
free energy per site on the square lattice (Ferdinand and Fisher 1969) 

fo( L )  = 2f:lng( L )  + K4(s , sk )~  + O( K i) 

2G/ rr + In 2 = 0.929 695 398 (3 .3 )  

where G = Catalan's constant when K4 vanishes. 
To the first order in K4, the correlation function in equation (3.2) is to be evaluated 

at the Isirig critical point K , =  112 I n ( l + f i ) .  The square lattice Ising model remains 
self-dual on a strip with periodic boundary conditions and this property may be used 
to show that the internal energy density ulsing( K , )  and ( K , )  keep their bulk values 
(Syozi 1972, Debierre and Turban 1983). As a consequence the second term in equation 
(3.2) is size independent. fFing( L )  must be evaluated on the Baxter critical line K 2 J  K , )  
such that 

t =  K , , ( K , ) - K , = - K , / ~ + O ( K ~ )  (3.4) 

according to equation (1.4). One knows from finite-size scaling theory (Privman and 
Fisher 1984) that 

(3.5) 
where the first term gives the bulk free energy density. In the second Y ( x )  is a universal 
function with Y(0)  = Ating and c1 is a non-universal metric factor. Since we are looking 
for the size dependence we only need to consider the second term in equation (3.5). 
To the first order in K ,  one obtains 

fpy L, t )  = f O  I-( t )  + L-2 Y (  c1 a y ! )  
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The critical internal energy density on the strip is given by 

I = o  
a f F  uISlng( K, ,  L )  = K ,  - 

a t  

(3.7) 

where the first term on the right gives the bulk value. Since, as mentioned above, the 
critical internal energy density on the strip is size independent, the amplitude d Y/dxl,,, 
must vanish. The second term in equation (3.6) vanishes too and to the first order in 
K4 all the size dependence of the free energy amplitude in the Baxter model is provided 
by the Ising contribution 

A. = 2A:;’”’+ O( K :). (3.8) 

Note added. After submission of this paper, we learned that, using conformal invariance, the free energy 
amplitude may be related to the central charge of the Virasoro algebra (Blote et a /  1986, AfReck 1986). The 
Baxter model has been studied in the first of these works and our suggestion that the Baxter free energy 
amplitude is twice the Ising one is confirmed by the exact result of Blote et a / .  
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